We propose a ring photonic crystal working in the near infrared region, where the air holes in the background material GaAs are arranged to form a series of rings. We find that the band gaps do not depend on the incident direction,and only a small number of rows are needed to create a frequency gap in the transmission spectrum. The transmission spectra of both P and S polarizations show that there is a complete bandgap in the hexagonal ring photonic crystals and the ratio of gap width to mid-gap frequency is as high as 11%.