原文服务方: 计算机测量与控制       
摘要:
针对电机震动信号的频谱特点,提出基于小波-神经网络技术的电机故障模式识别与诊断的新方法.利用小波包可进行多维多分辨率的特性,对电机振动信号进行分解与重构,获得震动信号的突变信息,实现电机状态的特征提取.对提取出的特征,用ART2神经网络进行状态分类,进而诊断故障类型,并利用这种方法进行仿真试验,通过对仿真结果的分析证实这种诊断的可行性.
推荐文章
基于小波神经网络的电机故障诊断研究
异步电动机
故障诊断
转子故障
小波神经网络
基于小波神经网络(WNN)的齿轮故障诊断
齿轮故障机理
齿轮故障诊断
小波神经网络(WNN)
基于小波神经网络的电机声频故障诊断系统
小波变换
神经网络
故障诊断
基于无监督神经网络的故障模式识别
无监督神经网络
模式识别
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波-神经网络技术的电机故障模式识别与诊断
来源期刊 计算机测量与控制 学科
关键词 小波包 ART2神经网络 故障模式识别
年,卷(期) 2004,(3) 所属期刊栏目 自动化测试
研究方向 页码范围 231-233
页数 3页 分类号 TP277
字数 语种 中文
DOI 10.3321/j.issn:1671-4598.2004.03.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈虹 扬州大学信息工程学院 78 581 13.0 19.0
2 翟玉庆 东南大学计算机科学与工程系 46 489 12.0 20.0
3 吴桂峰 东南大学计算机科学与工程系 40 196 7.0 12.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (1)
共引文献  (14)
参考文献  (3)
节点文献
引证文献  (12)
同被引文献  (19)
二级引证文献  (18)
1987(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2004(1)
  • 引证文献(1)
  • 二级引证文献(0)
2005(2)
  • 引证文献(1)
  • 二级引证文献(1)
2006(7)
  • 引证文献(6)
  • 二级引证文献(1)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2008(3)
  • 引证文献(1)
  • 二级引证文献(2)
2009(3)
  • 引证文献(0)
  • 二级引证文献(3)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(5)
  • 引证文献(1)
  • 二级引证文献(4)
2012(2)
  • 引证文献(0)
  • 二级引证文献(2)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
小波包
ART2神经网络
故障模式识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
相关基金
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导