摘要:
利用Green定理和微分不等式,研究一类拟线性抛物型偏微分方程组: ((e)ui(x,t))/((e)t)=ai(t)Δui(x,t)+∑sk=1aik(t)Δui(x,ρk(t))-pi(x,t)ui(x,t)-∑mj=1fij[t,x,uj(x,σ(t))],i=1,2,...,m解的振动性,获得该类方程组在两类不同边值条件:((e)ui(x,t))/((e)N)+gi(x,t)ui(x,t)=0,(x,t)∈(e)Ω×R+,i=1,2,...,m和ui(x,t)=0,(x,t)∈(e)Ω×R+,i=1,2,...,m所有解振动的若干充分条件: limt→∞ inf∫tσ(t)q(s)exp∫sσ(s)p(r)drds>(1)/(e).