基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对脑机接口(BCI)研究中存在脑电信号(EEG)识别率低的问题,提出一种基于遗传算法(GA)和概率神经网络(PNN)的GA-PNN识别方法.用该方法对EEG提取时频特征,构成模式识别的初始特征.以训练样本识别正确率为适应度函数,采用GA对初始特征进行组合优化.基于优选后的特征,用PNN对测试样本进行分类.该方法使EEG识别正确率达到92.49%,与2003年BCI国际竞赛最好的处理结果(88.7%)相比,提高近4%,为BCI中EEG的识别提供了有效的手段.
推荐文章
基于脑电信号的情感识别研究
脑电信号
情感识别
微分熵
通道选择
遗传算法
基于多特征融合的运动想象脑电信号识别研究
脑电识别
特征融合
主成分分析
支持向量机
运动想象
表情驱动下脑电信号的建模仿真及分类识别
表情驱动
脑电信号
机理建模
小波变换
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于遗传算法和概率神经网络提高脑机接口中脑电信号识别率
来源期刊 上海交通大学学报 学科 医学
关键词 脑机接口 脑电信号 遗传算法 概率神经网络 组合优化
年,卷(期) 2005,(10) 所属期刊栏目 生物工程
研究方向 页码范围 1689-1692
页数 4页 分类号 R318|TP183|TN911
字数 2276字 语种 中文
DOI 10.3321/j.issn:1006-2467.2005.10.028
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 颜国正 上海交通大学电子信息与电气工程学院 340 4219 33.0 49.0
2 杨帮华 上海交通大学电子信息与电气工程学院 13 283 8.0 13.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (4)
节点文献
引证文献  (10)
同被引文献  (0)
二级引证文献  (0)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2006(1)
  • 引证文献(1)
  • 二级引证文献(0)
2008(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(2)
  • 引证文献(2)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
脑机接口
脑电信号
遗传算法
概率神经网络
组合优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
上海交通大学学报
月刊
1006-2467
31-1466/U
大16开
上海市华山路1954号
4-338
1956
chi
出版文献量(篇)
8303
总下载数(次)
20
总被引数(次)
98140
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导