摘要:
例1已知tanα,tanβ是方程x2+3√3x+4=0的两根,且α,β(-π2,2π),则α+β的值为A.π3B.-23π或3πC.-π3或23πD.-23π错解∵tanα+tanβ=-3√3,tanαtanβ=4,∴tan(α+β)=tanα+tanβ1-tanαtanβ=-13√-43=√3.又α,β(-π2,2π),∴α+β(-π,π).因此,α+β=-2π3或π3.选B.辨析错在忽视了tanα,tanβ是方程x2+3√3x+4=0的两个负根这一隐含条件.正解∵tanα+tanβ=-3√3<0,tanαtanβ=4>0,∴tanα,tanβ为方程x2+3√3x+4=0的两个负根,即tanα<0,tanβ<0.又α,β(-π2,2π),∴α,β(-π2,0),α+β(-π,0).又tan(α+β)=tanα+tanβ1-tanαtanβ=-13√-43=√3,∴α+β=-2π3.选D.例2已知sin2α=a,cos2α=b,求tan(α+π4)的值.错解由正切的半角公式,得tan(α+π4)=1-cos(2α+π2)sin(2α+π2)=1+sin2αcos2α=1b+a.辨析错在使用公式时,没有注意定义...