基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
神经网络是智能故障诊断系统的一种重要的方法.粗糙集理论则是处理不完备信息的一种技术.文中以复杂的人工智能诊断问题为研究对象,系统地论述了基于神经网络、粗糙集、信息融合的智能诊断的理论、方法与实践.其主要方法如下:在故障诊断的神经网络模型的基础上,以粗糙集理论中的信息系统属性值表为主要工具,将复杂的组合神经网络约简并删除其中不必要的属性,克服了网络规模过于庞大和分类速度慢的缺点,并给出了基于粗糙集理论的组合神经网络的模型结构,最后再利用数据融合技术,得出更加精确的结果.一个故障诊断实例证明了该方法的有效性.
推荐文章
基于邻域粗糙集和并行神经网络的故障诊断
故障诊断
邻域粗糙集
神经网络
并行网络结构
基于粗糙集和神经网络的柱塞泵故障诊断
粗糙集
人工神经网络
轴向柱塞泵
故障诊断
粗糙集CMAC神经网络故障诊断策略
粗糙集
神经网络
故障诊断
变压器
基于粗糙集和神经网络的柴油机故障诊断
粗糙集
ROSETTA
小波包降噪
RBF人工神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粗糙集神经网络和信息融合的故障诊断
来源期刊 微机发展 学科 工学
关键词 智能诊断 神经网络 粗糙集 信息融合
年,卷(期) 2005,(1) 所属期刊栏目 应用研究
研究方向 页码范围 54-57
页数 4页 分类号 TP206+.3
字数 2724字 语种 中文
DOI 10.3969/j.issn.1673-629X.2005.01.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王英健 长沙理工大学计算机与通信工程学院 36 264 10.0 14.0
2 赵洪国 长沙理工大学计算机与通信工程学院 2 9 1.0 2.0
3 王善侠 长沙理工大学计算机与通信工程学院 2 9 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (35)
参考文献  (4)
节点文献
引证文献  (9)
同被引文献  (12)
二级引证文献  (11)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(6)
  • 参考文献(0)
  • 二级参考文献(6)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2005(2)
  • 引证文献(2)
  • 二级引证文献(0)
2006(4)
  • 引证文献(3)
  • 二级引证文献(1)
2007(3)
  • 引证文献(0)
  • 二级引证文献(3)
2008(3)
  • 引证文献(1)
  • 二级引证文献(2)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(2)
  • 引证文献(1)
  • 二级引证文献(1)
2011(2)
  • 引证文献(1)
  • 二级引证文献(1)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
智能诊断
神经网络
粗糙集
信息融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
总被引数(次)
111596
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导