摘要:
利用泛函分析方法证明差分方程xn+1=∑i∈Zk-{j,s,t}xn-i+xrn-t+xn-jxmn-s+A/∑i∈Zk-{j,s,t}xn-i+xmn-s+xn-jxrn-t+A,n=0,1,...,其中k∈{2,3,...},j,s,t∈Zk≡{0,1,...,k}(s≠t,j( ){s,t}),A,r,m∈[0,+∞)且初始条件x-k,x-k+1,...,x0∈(0,+∞),和差分方程xn+1=∑i∈Zk-{j0,j1,...,js}xn-i+xn-j0xn-j1...xn-js+1/∑i∈Zk-{j0,j1,...,js-1}xn-i+xn-j0xn-j1...xn-js-1,n=0,1,...,其中k∈{1,2,3,...},1≤s≤k,{j0,…,js}( )Zk(ji≠jl对i≠l)且初始条件 x-k,x-k+1,...,x0∈(0,+∞)的唯一平衡点=1是全局渐近稳定的.该结果推广了文献[3~5,7]中相应的结果.