基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种人工神经网络与灰色理论模型相结合的综合预测方法.在神经网络结构设计中分别选取带有横向和纵向特征的负荷作为输入,并充分考虑气候敏感因素及特殊负荷日的影响.在分析预测差值的基础上,将灰色理论残差校正模型运用到预测结果的修正当中去.算例表明所提出的方法提高了预测精度.
推荐文章
基于粒子群的电力系统短期负荷预测
PSO
BP神经网络
适应度
迭代
模糊推理
基于BP神经网络的电力系统短期负荷预测
负荷预测
神经网络
遗传算法
基于BP和多项式拟合模型在电力系统短期负荷的研究
BP
多项式拟合
电力系统短期负荷
MATLAB
相对误差
电力系统短期负荷预测的改进BP算法
短期负荷预测
人工神经网络
改进算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于ANN和残差修正的电力系统短期负荷预测
来源期刊 信息技术 学科 工学
关键词 短期负荷预测 人工神经网络 灰色理论残差修正
年,卷(期) 2006,(6) 所属期刊栏目 应用技术
研究方向 页码范围 62-64,150
页数 4页 分类号 TP183
字数 2378字 语种 中文
DOI 10.3969/j.issn.1009-2552.2006.06.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 周步祥 四川大学电气信息学院 121 1391 19.0 33.0
2 单明 四川大学电气信息学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (184)
参考文献  (7)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(4)
  • 参考文献(2)
  • 二级参考文献(2)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短期负荷预测
人工神经网络
灰色理论残差修正
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术
月刊
1009-2552
23-1557/TN
大16开
哈尔滨市南岗区黄河路122号
14-36
1977
chi
出版文献量(篇)
11355
总下载数(次)
31
论文1v1指导