摘要:
U-Th矿物等时线法定年适用于小于350ka范围的年轻火山岩.但是,火山岩矿物U-Th同位素比值不仅反映了火山的喷发年龄,而且受到岩浆房过程和结晶分异过程时间尺度的影响,在一些研究中,出现了等时线年龄(表面年龄)比实际火山喷发年龄偏老的问题,这种现象为研究岩浆房滞留时间和矿物结晶分异时间尺度问题提供了很好的条件.长期以来,国际上不乏此类研究,但迄今为止,还没有准确、实用的数值模型来描述结晶分异过程对矿物等时线年龄的影响,更无从谈起合理的计算方程.本文以一个简化的晶体生长模型(岩浆房U-Th同位素初始比值保持不变;不考虑可能的熔蚀和结晶间断;矿物的结晶速率可以简化表示,例如dV=kt·dt)为例,考察了在晶体生长(结晶分异)条件影响下的U-Th同位素衰变关系:(230Th/232Th)=(230Th/232Th)0·1/λTm·(e-λ(T1-Tm)-e-λT1)+(238U/232Th)·1/λTm·(e-λT1-e-λ(T1-Tm))]这仍然是一个线性方程,斜率(m)表达了火山岩喷发年龄(T2)和矿物结晶分异时间(Tm,岩浆房滞留时间)尺度的耦合关系,而不只是喷发年龄,用方程表示为m=1/λTm·(e-λ(T2+Tm)-e-λT2)新的模型表明,等时线出现的一般条件是不同种类的矿物具有相同的结晶历史(包括火山岩喷发年龄和矿物结晶分异的时间尺度),而不是单一的喷发年龄,在大多数年轻火山岩喷发年龄相对表较明确的条件下,我们可以应用该模型估算很多火山的岩浆房滞留时间尺度.把新的模型和方程应用于天池火山的U-Th同位素年代学研究,根据Dunlap(1996)分析测试的数据,天池火山千年大喷发岩浆房滞留时间为100ka左右.这个时间与Dunlap(1996)所估计的时间(60~100ka)的上限一致;值得注意的是,在我们的新模型中,我们认为岩浆房滞留时间和矿物结晶分异时间尺度可能被低估,实际时间应当大于等于这个数值.