原文服务方: 现代电子技术       
摘要:
交通流预测在城市交通管理和控制中起着十分重要的作用.在分析城市交通流复杂非线性特性的基础上引入BP神经网络模型,从人工智能的角度对交通流预测进行了研究,同时给出了一种基于BP神经网络模型的交通流预测方法,通过对预测数据与实测数据的比较分析,证实了该方法的有效性.
推荐文章
基于神经网络的城市交通流预测研究
神经网络
城市交通
交通流
预测模型
基于PSO的BP神经网络-Markov船舶交通流量预测模型
船舶交通流量预测
BP神经网络
马尔科夫模型(Markov模型)
粒子群优化(PSO)
基于神经网络的城市交通流预测研究
神经网络
交通流
预测模型
基于粒子群的模糊神经网络交通流量预测
短时交通流
预测模型
模糊神经网络
粒子群算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BP神经网络的城市交通流预测研究
来源期刊 现代电子技术 学科
关键词 非线性 BP神经网络 交通流预测 人工智能
年,卷(期) 2006,(23) 所属期刊栏目 汽车电子
研究方向 页码范围 104-106
页数 3页 分类号 U491
字数 语种 中文
DOI 10.3969/j.issn.1004-373X.2006.23.039
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐今强 广东海洋大学信息学院 22 47 4.0 6.0
2 张裕清 3 76 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (10)
同被引文献  (9)
二级引证文献  (13)
1984(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(3)
  • 引证文献(3)
  • 二级引证文献(0)
2009(4)
  • 引证文献(4)
  • 二级引证文献(0)
2012(2)
  • 引证文献(1)
  • 二级引证文献(1)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(3)
  • 引证文献(0)
  • 二级引证文献(3)
2016(3)
  • 引证文献(0)
  • 二级引证文献(3)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
非线性
BP神经网络
交通流预测
人工智能
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导