基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
K-均值算法聚类速度快,易于实现,且对数据依赖度低,在文本聚类中得到广泛应用.然而,由于聚类初始中心点选择的随机性,传统K-均值算法以及其变种的聚类结果会产生较大的波动.文章对K-均值算法进行了改进,通过自适应选择最佳密度半径进而优化聚类初始中心选择的方法,得到一种适合文本数据聚类分析的改进算法.实验表明,该算法能够生成质量较高而且波动性较小的聚类结果.
推荐文章
自适应调整的布谷鸟搜索K-均值聚类算法
布谷鸟搜索算法
自适应优化学习
步长调节
动态变化发现概率
初始簇中心
K-均值聚类
基于样本空间分布密度的初始聚类中心优化K-均值算法
关键词
聚类
K-均值聚类
初始中心
邻域
样本分布密度
基于差分演化的K-均值聚类算法
聚类
差分演化算法
K-均值
基于加权距离计算的自适应粗糙K-均值算法
粗糙集理论
属性约简
正态性检验
高斯分布模型
聚类分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于密度半径自适应选择的K-均值聚类算法
来源期刊 大连交通大学学报 学科 工学
关键词 文本聚类 K-均值 密度半径 自适应
年,卷(期) 2007,(1) 所属期刊栏目
研究方向 页码范围 41-44
页数 4页 分类号 TP311.132
字数 3573字 语种 中文
DOI 10.3969/j.issn.1673-9590.2007.01.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨鑫华 大连交通大学机械工程学院 59 296 9.0 15.0
2 于宽 大连交通大学软件学院 1 9 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (28)
参考文献  (5)
节点文献
引证文献  (9)
同被引文献  (17)
二级引证文献  (19)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(3)
  • 参考文献(3)
  • 二级参考文献(0)
2007(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2008(2)
  • 引证文献(2)
  • 二级引证文献(0)
2009(3)
  • 引证文献(3)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(0)
  • 二级引证文献(1)
2012(3)
  • 引证文献(0)
  • 二级引证文献(3)
2013(5)
  • 引证文献(0)
  • 二级引证文献(5)
2014(2)
  • 引证文献(0)
  • 二级引证文献(2)
2015(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(5)
  • 引证文献(0)
  • 二级引证文献(5)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
文本聚类
K-均值
密度半径
自适应
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大连交通大学学报
双月刊
1673-9590
21-1550/U
大16开
大连市沙河口区黄河路794号
1980
chi
出版文献量(篇)
3012
总下载数(次)
3
总被引数(次)
12659
论文1v1指导