基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
BP神经网络在用于高光谱遥感图像分类时,其初始权值的选取对分类结果有很大影响.针对这种情况,提出了一种将BP神经网络与决策融合理论相结合的高光谱遥感图像分类方法,该方法将多个结构相同、初始权值不同的BP神经网络的分类结果进行融合,最后把融合结果作为原图像的最终分类结果,以实际的高光谱遥影像为例,说明该方法能够有效地提高遥感影像的分类精度.
推荐文章
基于降维Gabor特征和决策融合的高光谱图像分类
高光谱图像
分类
Gabor特征
高斯混合模型
决策融合
PCA投影
基于SSAE深度学习特征表示的高光谱遥感图像分类方法
高光谱遥感图像分类
堆叠稀疏自动编码器
深度学习
特征表示
支持向量机
基于联合协同表示与SVM决策融合的高光谱图像分类研究
协同表示
高光谱图像分类
决策融合
支持向量机
采用ACGAN及多特征融合的 高光谱遥感图像分类
高光谱图像分类
生成对抗网络
局部二值模式
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于BP网络和决策融合的高光谱遥感图像分类方法
来源期刊 应用科技 学科 工学
关键词 BP神经网络 高光谱遥感 图像分类 初始权值 决策融合
年,卷(期) 2007,(1) 所属期刊栏目 现代电子技术
研究方向 页码范围 13-16
页数 4页 分类号 TP391
字数 3263字 语种 中文
DOI 10.3969/j.issn.1009-671X.2007.01.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵春晖 哈尔滨工程大学信息与通信工程学院 364 3419 27.0 39.0
2 于君娜 哈尔滨工程大学信息与通信工程学院 1 7 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (29)
共引文献  (35)
参考文献  (5)
节点文献
引证文献  (7)
同被引文献  (16)
二级引证文献  (0)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(7)
  • 参考文献(0)
  • 二级参考文献(7)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2007(1)
  • 引证文献(1)
  • 二级引证文献(0)
2009(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
BP神经网络
高光谱遥感
图像分类
初始权值
决策融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用科技
双月刊
1009-671X
23-1191/U
大16开
哈尔滨市南通大街145号1号楼
14-160
1974
chi
出版文献量(篇)
4861
总下载数(次)
7
总被引数(次)
21528
论文1v1指导