基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机是解决非线性问题的重要工具,对多元线性回归模型和支持向量机的原始形式进行比较,拟定从样本子集的多元线性回归模型出发,逐步搜索支持向量,提出了一种建立支持向量回归机的快速算法,以降低核矩阵的规模从而降低解凸二次规划的复杂度;最后,分析了该算法的复杂度,并提供了一个算例.
推荐文章
一种新的快速支持向量回归算法
二次规划
支持向量回归
连续过松弛
一种快速加权支持向量机训练算法
加权支持向量机
工作集
目标函数
关于逐步回归算法的一个修正
逐步回归
符号回归
机器学习
一种基于PSO的混合核支持向量机算法
支持向量机
全局核函数
局部核函数
混合核函数
粒子群优化算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种支持向量逐步回归机算法研究
来源期刊 计算机工程与应用 学科 工学
关键词 支持向量逐步回归机 核矩阵 复杂度分析
年,卷(期) 2007,(8) 所属期刊栏目 学术探讨
研究方向 页码范围 78-81
页数 4页 分类号 TP301.6
字数 4245字 语种 中文
DOI 10.3321/j.issn:1002-8331.2007.08.026
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曹长修 重庆大学自动化学院 162 2835 26.0 47.0
2 曾绍华 重庆大学自动化学院 9 76 4.0 8.0
4 魏延 重庆大学自动化学院 44 283 10.0 15.0
10 段廷才 重庆大学计算机学院 1 11 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (2)
共引文献  (17)
参考文献  (8)
节点文献
引证文献  (11)
同被引文献  (11)
二级引证文献  (29)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2007(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2007(2)
  • 引证文献(2)
  • 二级引证文献(0)
2009(2)
  • 引证文献(2)
  • 二级引证文献(0)
2010(8)
  • 引证文献(2)
  • 二级引证文献(6)
2011(5)
  • 引证文献(2)
  • 二级引证文献(3)
2012(6)
  • 引证文献(2)
  • 二级引证文献(4)
2013(4)
  • 引证文献(0)
  • 二级引证文献(4)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(3)
  • 引证文献(0)
  • 二级引证文献(3)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
研究主题发展历程
节点文献
支持向量逐步回归机
核矩阵
复杂度分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导