风电场准确的风速预测可以减轻或避免风电对电网的不利影响,有利于在开放的电力市场环境下正确制定电能交换计划,提高风电竞争力.基于风速序列的时序性,使用极大似然法对风速序列进行了Box-Cox最优变换,建立了ARMA(p,q)风速预测模型.为检验时间序列模型的有效性,利用最小信息准则中的BIC(Bayesian Information Criterion)函数对ARMA(p, q)模型进行识别,并通过风速频率曲线对预测结果进行了修正.仿真结果和算例验证了该方法在风电场风速预测中的适用性,具有一定的实用价值.