基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在分析非线性河道洪水预报方法中常用BP神经网络不足的基础上,采用具有快速收敛和更有效非线性逼近能力特性的小波神经网络.为适应洪水演进的时变特性,将所建立的用于河道洪水预报的小波神经网络与自回归实时校正模型耦合,校正值为小波神经网络预报值与自回归模型预报误差之和.自回归实时校正模型的参数通过自适应衰减因子递推最小二乘动态更新以提高校正效果.将该方法应用于西江高要断面洪水预报,计算结果验证了其有效性.
推荐文章
采用自适应自回归小波神经网络的单步预测控制
预测控制
混沌
非线性系统
自适应自回归小波神经网络
基于小波神经网络模型的含沙量预测研究
小波函数
BP神经网络
含沙量
基于小波神经网络的网络流量预测研究
小波神经网络
网络流量
预测研究
训练样本
小波神经网络模型在滁河流域南京段洪水预报中的应用
小波神经网络
洪水预报
滁河流域
南京
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小波神经网络和自回归模型耦合的河道洪水预测方法
来源期刊 东南大学学报(英文版) 学科 地球科学
关键词 河道洪水预测 小波神经网络 自回归模型 递推最小二乘 自适应衰减因子
年,卷(期) 2008,(1) 所属期刊栏目
研究方向 页码范围 90-94
页数 5页 分类号 P338
字数 724字 语种 英文
DOI 10.3969/j.issn.1003-7985.2008.01.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李致家 河海大学水文水资源学院 176 1917 22.0 34.0
2 马振坤 河海大学水文水资源学院 4 31 3.0 4.0
3 周轶 河海大学水文水资源学院 6 120 6.0 6.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (94)
参考文献  (9)
节点文献
引证文献  (6)
同被引文献  (3)
二级引证文献  (3)
1974(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(3)
  • 参考文献(1)
  • 二级参考文献(2)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(3)
  • 参考文献(1)
  • 二级参考文献(2)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(6)
  • 参考文献(0)
  • 二级参考文献(6)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(2)
  • 二级参考文献(2)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2009(4)
  • 引证文献(4)
  • 二级引证文献(0)
2011(2)
  • 引证文献(0)
  • 二级引证文献(2)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
河道洪水预测
小波神经网络
自回归模型
递推最小二乘
自适应衰减因子
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东南大学学报(英文版)
季刊
1003-7985
32-1325/N
大16开
南京四牌楼2号
1984
eng
出版文献量(篇)
2004
总下载数(次)
1
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导