基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
当前,数论已被广泛运用于公钥密码学,而公钥密码学的一个重要运用就是数字签名,在大多数情况下,签名通常是一个人,然而当所需签名的消息代表一个群体时就需要群体中的一部分人同意,门限签名方案就被用作解决这个问题,文章运用ELGamal公钥密码理论和Schnorr理论,提出了一个基于孙子定理的(t,n)门限群签名方案.
推荐文章
基于嵌套分组秘密共享的(t, n)门限签名方案
门限群签名
分组秘密共享
嵌套
合谋攻击
一种具有表决权的(t,n)门限群签名方案
门限群签名
分组秘密共享
离散对数
合谋攻击
一种基于RSA安全可行的(t,n)门限签名方案
秘密共享
门限机制
门限签名
拉格朗日相关系数
一种广播多重(t,n)门限数字签名方案
广播多重数字签名
门限
离散对数问题
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于孙子定理的(t,n)门限群签名方案
来源期刊 杭州师范学院学报(自然科学版) 学科 工学
关键词 密码学 数字签名 门限方案 孙子定理
年,卷(期) 2008,(4) 所属期刊栏目
研究方向 页码范围 241-245
页数 5页 分类号 O153|TP309
字数 3667字 语种 中文
DOI 10.3969/j.issn.1674-232X.2008.04.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 沈忠华 杭州师范大学理学院 52 301 8.0 15.0
2 姚建平 杭州师范大学理学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (3)
同被引文献  (4)
二级引证文献  (1)
1976(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2010(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
密码学
数字签名
门限方案
孙子定理
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
杭州师范大学学报(自然科学版)
双月刊
1674-232X
33-1348/N
大16开
杭州市下沙高教园区学林街16号
1979
chi
出版文献量(篇)
2397
总下载数(次)
7
总被引数(次)
7649
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
浙江省自然科学基金
英文译名:
官方网址:http://www.zjnsf.net/
项目类型:一般项目
学科类型:
论文1v1指导