本文在Blasone研究工作的基础上,进一步提出了基于马尔科夫链-蒙特卡洛算法的改进通用似然不确定性估计方法(Markov Chain-Monte Carlo based Modified Generalized Likelihood Uncertainty Estimation,MMGLUE).该方法结合近年来被广泛用于推求参数后验分布的MCMC方法,对基于Monte Carlo随机取样方法的传统GLUE方法进行改进,并以预测区间性质最优为标准,对可行参数组阈值进行判断与选择,提出了衡量预测区间对称性的标准,并就预测区间性质与可行参数组个数的相关关系进行了探索.在汉江玉带河流域的实例研究证明,MMGLUE方法较传统的GLUE方法能够推求出性质更为优良的预测区间,从而更真实合理地反映水文模型的不确定性.