作者:
原文服务方: 现代电子技术       
摘要:
利用HK-2000C集成化数字脉搏传感器提取人体左关处桡动脉脉搏信号,然后计算脉搏功率谱,并在此基础上提取功率谱峰值、功率谱重心及其对应频率的特征量,最后利用支持向量机(SVM)对所提特征进行分类.通过与线性判别式分析(LDA)法分类结果对比可以看出,SVM算法有着理论上的突出优势,但在实际应用中,由于样本数目有限,而且在其核函数选择和参数调整方面,均需要视经验值而定,因此推广性较差,还需要进一步的研究和改进.
推荐文章
模糊支持向量机情感状态识别的研究
情感状态识别
模糊支持向量机
情感生理参数
基于支持向量机的手势识别研究
手势识别
支持向量机
核函数
多分类
基于支持向量机的人脸识别研究
人脸识别
支持向量机
离散小波变换
基于支持向量机的水中目标识别
支持向量机
水中目标识别
统计学习理论
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于支持向量机的亚健康状态识别
来源期刊 现代电子技术 学科
关键词 亚健康 脉象 功率谱 支持向量机
年,卷(期) 2009,(20) 所属期刊栏目 科学计算与信息处理
研究方向 页码范围 167-170
页数 4页 分类号 TP274+.3
字数 语种 中文
DOI 10.3969/j.issn.1004-373X.2009.20.054
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨凤霞 9 22 3.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (43)
参考文献  (7)
节点文献
引证文献  (7)
同被引文献  (5)
二级引证文献  (2)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(1)
  • 二级引证文献(1)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
亚健康
脉象
功率谱
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
总被引数(次)
135074
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导