基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对磨粒识别问题,建立了基于D-S证据理论的集成神经网络磨粒融合诊断方法.首先对特征参数进行优化分组,然后对每一组建立对应的分类子神经网络,分别采用径向基函数(RBF)神经网络和反向传播(BP)神经网络进行识别,得到初步的诊断结果,经过归一化后作为2组基本概率分配函数,最后运用D-S证据理论进行融合得到最终识别结果.算例分析表明,基于D-S证据法和集成神经网络的磨粒融合识别方法比单个诊断方法具有更高的准确性.
推荐文章
基于神经网络和D - S证据理论的船舶类型识别
多传感器融合
神经网络
D-S证据理论
船舶识别
基于神经网络和D-S证据理论的气液两相流流型识别方法
气液两相流
小波包变换
BP神经网络
D-S证据理论
流型识别
基于多通道Gabor滤波和D-S证据理论的虹膜识别
虹膜识别
Gabor滤波器
D-S证据理论
特征提取
基于D-S证据和PSO神经网络的电路故障诊断
电路
故障诊断
D-S证据
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于D-S证据理论和不同子神经网络集成的磨粒识别
来源期刊 飞机设计 学科 工学
关键词 磨粒识别 信息融合 D-S证据理论 集成神经网络
年,卷(期) 2009,(2) 所属期刊栏目
研究方向 页码范围 36-40
页数 5页 分类号 TH117.1
字数 4066字 语种 中文
DOI 10.3969/j.issn.1673-4599.2009.02.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李艳军 南京航空航天大学民航学院 89 441 12.0 17.0
2 罗锋 南京航空航天大学民航学院 5 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (55)
参考文献  (6)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(7)
  • 参考文献(0)
  • 二级参考文献(7)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(3)
  • 参考文献(3)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
磨粒识别
信息融合
D-S证据理论
集成神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
飞机设计
双月刊
1673-4599
21-1339/V
大16开
辽宁省沈阳市
1980
chi
出版文献量(篇)
1881
总下载数(次)
5
总被引数(次)
7568
论文1v1指导