原文服务方: 海洋技术学报       
摘要:
为提高非线性和非平稳海水温度时间序列的预测能力,提出了一种基于经验模态分解(Empirical Mode Decomposition.简称EMD)的BP神经网络预测方法.该方法首先对原始序列进行经验模态分解,将其分解为多个平稳性得到很大改善的本征模态函数(Intrinsic Mode Function,简称IMF)之和,然后时每个本征模态函数进行预测,最后再根据EMD方法的完备性把预测结果相加得出原始序列的预测结果.预测试验结果表明.基于EMD的BP神经网络预测的精度比单纯用BP神经网络预测有很大提高.
推荐文章
土壤温度时间序列预测的BP神经网络模型研究
土壤温度预测
时间序列
BP神经网络
滨海盐碱区
农业气象观测
基于改进BP神经网络的混沌时间序列预测方法对比
混沌时间序列
BP神经网络
遗传算法
粒子群算法
基于LM-BP神经网络的Argo数据西北太平洋海水温度模型
海水温度
西北太平洋
LM-BP神经网络
Argo数据
基于改进神经网络的GDP时间序列预测
BP神经网络
GDP预测
准确率
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于EMD的BP神经网络海水温度时间序列预测研究
来源期刊 海洋技术学报 学科
关键词 经验模态分解 BP神经网络 海水温度时间序列预测 非平稳性序列
年,卷(期) 2009,(3) 所属期刊栏目 研究与应用
研究方向 页码范围 79-82
页数 4页 分类号 TP183|P71
字数 语种 中文
DOI 10.3969/j.issn.1003-2029.2009.03.021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 笪良龙 海军潜艇学院海军战术水声数据中心 108 388 10.0 12.0
2 徐国军 海军潜艇学院海军战术水声数据中心 19 53 3.0 6.0
3 卢晓亭 海军潜艇学院海军战术水声数据中心 15 89 4.0 9.0
7 孙勇 海军潜艇学院海军战术水声数据中心 1 11 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (14)
参考文献  (4)
节点文献
引证文献  (11)
同被引文献  (71)
二级引证文献  (35)
1994(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(2)
  • 引证文献(2)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2014(4)
  • 引证文献(2)
  • 二级引证文献(2)
2015(4)
  • 引证文献(1)
  • 二级引证文献(3)
2016(9)
  • 引证文献(2)
  • 二级引证文献(7)
2017(9)
  • 引证文献(1)
  • 二级引证文献(8)
2018(6)
  • 引证文献(0)
  • 二级引证文献(6)
2019(9)
  • 引证文献(1)
  • 二级引证文献(8)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
经验模态分解
BP神经网络
海水温度时间序列预测
非平稳性序列
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
海洋技术学报
双月刊
1003-2029
12-1435/P
大16开
1982-01-01
chi
出版文献量(篇)
2588
总下载数(次)
0
论文1v1指导