原文服务方: 湖南大学学报(自然科学版)       
摘要:
针对大多数现有的机器学习算法处理大规模问题时需要的训练时间很长和存储空间很大的难点,提出了基于分类面拼接的快速模块化支持向量机算法(psfm-SVMs).在训练阶段,psfm-SVMs采用一簇平行超平面对大规模问题实施软划分,然后针对每个子问题并行训练支持向量机.在测试阶段,测试样本坐落于哪个子问题所在空间中,就由该子问题训练的支持向量机给出判别结果.在4个大规模问题上的实验表明:与采取硬划分的快速模块化支持向量机(fm-SVMs)相比,软划分能够使psfm-SVMs得到更加光滑的分类面,因而psfm-SVMs的泛化能力较高.在不增加训练时间的条件下,psfm-SVMs减少了由于训练集分割导致的分类器泛化能力下降.
推荐文章
基于支持向量机的流量分类方法
流量分类
支持向量机
流量识别
用于分类的支持向量机
支持向量机
机器学习
分类
基于支持向量机的路面图像分类方法
路面分类
颜色特征
纹理特征
模糊支持向量机
岩爆分类的支持向量机方法
岩爆
分类
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于分类面拼接的快速模块化支持向量机研究
来源期刊 湖南大学学报(自然科学版) 学科
关键词 并行处理系统 学习系统 支持向量机 模块化
年,卷(期) 2009,(3) 所属期刊栏目 机电工程
研究方向 页码范围 45-50
页数 6页 分类号 TP391.4
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王耀南 湖南大学电气与信息工程学院 624 12897 53.0 86.0
2 文益民 湖南大学电气与信息工程学院 36 404 8.0 19.0
6 张莹 湖南大学电气与信息工程学院 23 259 9.0 15.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (154)
参考文献  (11)
节点文献
引证文献  (3)
同被引文献  (3)
二级引证文献  (4)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(6)
  • 参考文献(1)
  • 二级参考文献(5)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(3)
  • 参考文献(3)
  • 二级参考文献(0)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
并行处理系统
学习系统
支持向量机
模块化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
湖南大学学报(自然科学版)
月刊
1674-2974
43-1061/N
16开
1956-01-01
chi
出版文献量(篇)
4768
总下载数(次)
0
总被引数(次)
41941
相关基金
国家高技术研究发展计划(863计划)
英文译名:The National High Technology Research and Development Program of China
官方网址:http://www.863.org.cn
项目类型:重点项目
学科类型:信息技术
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导