基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在传统神经网络负荷预测的基础上,采用蚁群算法优化神经网络的权值,同时再用模糊逻辑对影响负荷的随机因素进行修正,提出了改进的蚁群神经网络算法.对四川某500 kV变电站进行短期负荷预测,结果表明这一算法能获得较高的预测精度,是一种行之有效的短期负荷预测方法.
推荐文章
基于混沌模糊神经网络方法的短期负荷预测
短期负荷
混沌算法
模糊神经网络
预测模型
基于PSO?BP神经网络的短期负荷预测算法
短期负荷预测
BP神经网络
粒子群算法
零相滤波器
蚁群神经网络用于农村电力短期负荷预测
蚁群算法
神经网络
短期负荷预测
农村电网
基于LSTM时间递归神经网络的短期电力负荷预测
短期电力负荷预测
LSTM
时间递归
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进蚁群神经网络的短期负荷预测
来源期刊 四川电力技术 学科 工学
关键词 短期负荷预测 蚁群算法 BP神经网络 模糊逻辑
年,卷(期) 2009,(5) 所属期刊栏目 专题研究
研究方向 页码范围 58-61,94
页数 5页 分类号 TM714
字数 3893字 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (60)
共引文献  (391)
参考文献  (6)
节点文献
引证文献  (4)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(5)
  • 参考文献(1)
  • 二级参考文献(4)
1997(3)
  • 参考文献(1)
  • 二级参考文献(2)
1998(9)
  • 参考文献(0)
  • 二级参考文献(9)
1999(8)
  • 参考文献(0)
  • 二级参考文献(8)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(6)
  • 参考文献(1)
  • 二级参考文献(5)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(8)
  • 参考文献(0)
  • 二级参考文献(8)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短期负荷预测
蚁群算法
BP神经网络
模糊逻辑
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川电力技术
双月刊
1003-6954
51-1315/TM
大16开
四川省成都市高新区锦晖西二街16号四川电科院媒体业务中心
1978
chi
出版文献量(篇)
3021
总下载数(次)
2
总被引数(次)
10921
论文1v1指导