基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
粒子群优化(PSO)算法是根据鸟群觅食过程中的迁徙和群集模型而提出的用于解决优化问题的算法,是一类随机全局优化技术,它通过粒子间的相互作用搜索复杂空间中的最优区域,其优势在于效率高,且又简单易实现.笔者讨论了PSO算法用于板状体磁异常数据反演的方法,并与遗传算法(GA)进行了比较.理论和实测磁异常数据反演的结果表明,PSO算法具有更高的找寻最优解效率,是一种很有潜力的位场反演工具.
推荐文章
云计算Hadoop平台的异常数据检测算法研究
云计算
大数据
异常数据
Hadoop平台
面向群智感知车联网的异常数据检测算法
车联网
群智感知
异常数据检测
核密度估计
大规模高维数据集中局部异常数据挖掘算法
大规模高维数据集
局部异常数据
挖掘算法
本地化
基于改进负向选择算法的异常数据检测方法
异常数据检测
负向选择算法
污水处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 板状体磁异常数据反演的PSO算法
来源期刊 物探与化探 学科 地球科学
关键词 PSO算法 GA算法 板状体磁异常 反演
年,卷(期) 2009,(2) 所属期刊栏目 计算技术与信息处理
研究方向 页码范围 194-198
页数 5页 分类号 P631.2
字数 4270字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘天佑 中国地质大学地球物理与空间信息学院 95 1021 15.0 26.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (399)
参考文献  (10)
节点文献
引证文献  (14)
同被引文献  (28)
二级引证文献  (37)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(3)
  • 参考文献(3)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2010(4)
  • 引证文献(2)
  • 二级引证文献(2)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(3)
  • 引证文献(2)
  • 二级引证文献(1)
2013(11)
  • 引证文献(4)
  • 二级引证文献(7)
2014(5)
  • 引证文献(1)
  • 二级引证文献(4)
2015(5)
  • 引证文献(0)
  • 二级引证文献(5)
2016(4)
  • 引证文献(1)
  • 二级引证文献(3)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2018(6)
  • 引证文献(0)
  • 二级引证文献(6)
2019(5)
  • 引证文献(0)
  • 二级引证文献(5)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
PSO算法
GA算法
板状体磁异常
反演
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
物探与化探
双月刊
1000-8918
11-1906/P
大16开
北京学院路29号遥感中心
2-334
1979
chi
出版文献量(篇)
3832
总下载数(次)
3
论文1v1指导