作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种利用支持向量回归机(SVR)对函数链接型神经网络(FLANN)进行构造的新方法,并将其应用于传感器动态补偿.文中将SVR的解与常规FLANN估计进行对比,发现两者具有相同的问题形式,因此,在适当的参数条件下可通过SVR对FLANN进行优化构造.与常规FLANN构造方法比较,SVR-FLANN具有明显特点,即将权值迭代逼近问题转化为二次规划问题求解,使得在整个训练过程中有且仅有一个全局极值点,确定了所构造FLANN补偿器的唯一性.实际压力传感器动态补偿实验结果表明:用该方法构造的补偿器与常规方法相比,具有更高的精度、更强的抗干扰能力及更稳定的补偿效果.因此,更适合传感器动态补偿.
推荐文章
基于免疫PSO优化LSSVM的传感器动态补偿研究
传感器
最小二乘支持向量机
免疫粒子群算法
动态补偿
基于FLANN算法的速度传感器动态补偿
速度传感器
频带扩展
动态补偿
FLANN算法
基于 QPSO 算法的传感器动态补偿方法及FPGA实现
动态误差
动态补偿
QPSO
分布式算法
FPGA
LS-SVM构造FLANN逆系统的传感器动态补偿方法
逆系统
传感器
动态补偿
函数链接型神经网络
最小二乘支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于SVR构造FLANN的传感器动态补偿研究
来源期刊 计量学报 学科 工学
关键词 计量学 函数链接型神经网络 支持向量回归机 传感器 补偿 辨识
年,卷(期) 2009,(1) 所属期刊栏目
研究方向 页码范围 42-48
页数 7页 分类号 TB942
字数 5701字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴德会 九江学院电子工程系 66 721 15.0 23.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (48)
参考文献  (7)
节点文献
引证文献  (3)
同被引文献  (3)
二级引证文献  (6)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(4)
  • 参考文献(1)
  • 二级参考文献(3)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2009(1)
  • 引证文献(1)
  • 二级引证文献(0)
2011(3)
  • 引证文献(2)
  • 二级引证文献(1)
2012(1)
  • 引证文献(0)
  • 二级引证文献(1)
2013(1)
  • 引证文献(0)
  • 二级引证文献(1)
2014(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
计量学
函数链接型神经网络
支持向量回归机
传感器
补偿
辨识
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计量学报
月刊
1000-1158
11-1864/TB
大16开
北京1413信箱
2-798
1980
chi
出版文献量(篇)
3549
总下载数(次)
8
总被引数(次)
20173
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导