基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
增量学习是一种在巩固原有学习成果和不需要用到原有数据的情况下快速有效地获取新知识的学习模式.本文阐述了基于前馈神经网络的增量学习原理,在此基础上对主要的增量学习算法进行了详细的介绍和分析,最后对增量学习研究进行了总结和展望.
推荐文章
基于 ELM 的跨越前馈神经网络及其应用研究
神经网络
跨越连接
极速学习机
倒立摆系统
基于前馈神经网络的潮汐预报
前馈神经网络
感知器
潮汐
预报
基于动量项前馈神经网络盲均衡算法
盲均衡
前馈神经网络
动量项
大规模前馈神经网络的一种有效学习算法及其应用
前馈神经网络
大规模系统
拟牛顿方法
改进的拟牛顿方法
质量模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于前馈神经网络的增量学习研究
来源期刊 计算机与现代化 学科 工学
关键词 模式识别 神经网络 增量学习
年,卷(期) 2009,(7) 所属期刊栏目 人工智能
研究方向 页码范围 1-4,43
页数 5页 分类号 TP18
字数 5082字 语种 中文
DOI 10.3969/j.issn.1006-2475.2009.07.001
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (17)
参考文献  (14)
节点文献
引证文献  (3)
同被引文献  (4)
二级引证文献  (16)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(1)
  • 二级参考文献(1)
1990(2)
  • 参考文献(2)
  • 二级参考文献(0)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(2)
  • 二级参考文献(0)
1997(2)
  • 参考文献(2)
  • 二级参考文献(0)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(2)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(3)
  • 引证文献(1)
  • 二级引证文献(2)
2013(2)
  • 引证文献(0)
  • 二级引证文献(2)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(3)
  • 引证文献(0)
  • 二级引证文献(3)
2016(4)
  • 引证文献(0)
  • 二级引证文献(4)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
模式识别
神经网络
增量学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导