基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对贝叶斯网络的结构学习问题,基于并行随机抽样的思想提出了结构学习算法PCMHS,构建多条并行的收敛于Boltzmann分布的马尔可夫链.首先基于节点之间的互信息,进行所有马尔可夫链的初始化,在其迭代过程中,基于并行的MHS抽样总体得到产生下一代个体的建议分布,并通过对网络中弧和子结构的抽样产生下一代个体.算法FCMHS收敛于平稳分布,具有良好的学习精度,而该算法又通过使其初始分布和建议分布近似于其平稳分布,有效提高了马尔可夫链的收敛速度.在标准数据集上的实验结果验证了算法PCMHS的学习效率和学习精度明显优于经典算法MHS和PopMCMC.
推荐文章
贝叶斯网络结构学习综述
贝叶斯网络
结构学习
数据
统计分析
搜索
基于最大信息系数的贝叶斯网络结构学习算法
贝叶斯网络
结构学习
节点次序
最大信息系数
条件独立性测试
基于因果效应的贝叶斯网络结构学习方法
贝叶斯网络
阿尔茨海默病
K2算法
因果效应
BDe评分
互信息
基于量子遗传算法的贝叶斯网络结构学习
贝叶斯网络
结构学习
量子遗传算法
量子位
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于随机抽样的贝叶斯网络结构学习算法
来源期刊 计算机科学 学科 工学
关键词 贝叶斯网络 结构学习 随机抽样 马尔可夫链 建议分布
年,卷(期) 2009,(2) 所属期刊栏目 人工智能及图像处理
研究方向 页码范围 199-202
页数 4页 分类号 TP3
字数 6001字 语种 中文
DOI 10.3969/j.issn.1002-137X.2009.02.047
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡学钢 合肥工业大学计算机与信息学院 314 3156 27.0 39.0
2 胡春玲 合肥工业大学计算机与信息学院 7 55 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (7)
节点文献
引证文献  (3)
同被引文献  (5)
二级引证文献  (12)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(4)
  • 参考文献(4)
  • 二级参考文献(0)
2009(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(2)
  • 引证文献(2)
  • 二级引证文献(0)
2012(3)
  • 引证文献(0)
  • 二级引证文献(3)
2014(2)
  • 引证文献(1)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(3)
  • 引证文献(0)
  • 二级引证文献(3)
2019(3)
  • 引证文献(0)
  • 二级引证文献(3)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
贝叶斯网络
结构学习
随机抽样
马尔可夫链
建议分布
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机科学
月刊
1002-137X
50-1075/TP
大16开
重庆市渝北区洪湖西路18号
78-68
1974
chi
出版文献量(篇)
18527
总下载数(次)
68
相关基金
安徽省自然科学基金
英文译名:Anhui Provincial Natural Science Foundation
官方网址:http://www.ahinfo.gov.cn/zrkxjj/index.htm
项目类型:安徽省优秀青年科技基金
学科类型:
论文1v1指导