基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Diagnosing traffic anomalies rapidly and accurately is critical to the efficient operation of large computer networks. However, it is still a challenge for network administrators. One problem is that the amount of traffic data does not allow real-time analysis of details. Another problem is that some generic detection metrics possess lower capabilities on diagnosing anomalies. To overcome these problems, we propose a system model with an explicit algorithm to perform on-line traffic analysis. In this scheme, we first make use of degree distributions to effectively profile traffic features, and then use the entropy to determine and report changes of degree distributions, which changes of entropy values can accurately differentiate a massive network event, normal or anomalous by adaptive threshold. Evaluations of this scheme demonstrate that it is feasible and efficient for on-line anomaly detection in practice via simulations, using traffic trace collected at high-speed link.
推荐文章
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
Detection of tyrosine, trace metals and nutrients in cow dung: the environmental significance in soi
Cow dung
Excitation–emission matrix (EEM) spectroscopy
Parallel factor (PARAFAC) modelling
Tyrosine
Trace metals
基于Object Detection API的物流单元货架目标检测
深度学习
物流单元货架
目标检测
Faster R-CNN算法
SSD-MobileNet算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Online Detection of Network Traffic Anomalies Using Degree Distributions
来源期刊 通讯、网络与系统学国际期刊(英文) 学科 医学
关键词 ANOMALY Detection DEGREE DISTRIBUTIONS ENTROPY
年,卷(期) 2010,(2) 所属期刊栏目
研究方向 页码范围 177-182
页数 6页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ANOMALY
Detection
DEGREE
DISTRIBUTIONS
ENTROPY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
通讯、网络与系统学国际期刊(英文)
月刊
1913-3715
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
763
总下载数(次)
1
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导