基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对BP神经网络自身收敛速度慢、容易陷入局部极小点的缺点,引入粒子群优化算法,建立地表下沉系数的PSO-BP选取模型.利用粒子群算法反复优化BP网络的权值和阈值,将其作为BP网络的初始值,并将上覆岩层岩性、开采深厚比、松散层厚度、覆岩中坚硬岩层所占比例、是否为重复采动和顶板管理方法等主要影响因素作为网络输入,进行BP算法,直至网络达到训练指标.利用实测资料数据,建立PSO-BP预计模型,并同普通BP神经网络预计结果对比.结果表明:PSO-BP神经网络不仅训练速度快,而且预测精度明显提高,该模型对地表下沉系数选取具有一定的应用价值.
推荐文章
基于改进PSO-BP神经网络的回弹预测研究
V形自由折弯
回弹
BP神经网络
改进粒子群算法
全局搜索能力
收敛精度
泛化能力
基于PSO-BP神经网络的地铁盾构场地土体参数反演
土体参数
参数反演
BP神经网络
粒子群算法
PSO-BP神经网络
正交试验法
预测分析
基于GPU的PSO-BP神经网络DOA估计
波达方向估计
粒子群优化
神经网络
图形处理单元
统一计算设备架构
基于PSO-BP神经网络的高炉煤气受入量的预测
高炉煤气
受入量预测
预测模型
PSO-BP神经网络
模型训练
模型检验
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO-BP神经网络的地表下沉系数选取研究
来源期刊 测绘工程 学科 工学
关键词 粒子群 BP神经网络 地表下沉系数
年,卷(期) 2010,(6) 所属期刊栏目
研究方向 页码范围 57-60
页数 分类号 TD325|TP183
字数 2067字 语种 中文
DOI 10.3969/j.issn.1006-7949.2010.06.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘文生 辽宁工程技术大学土木与交通学院 51 551 14.0 21.0
2 张飞 辽宁工程技术大学测绘与地理科学学院 17 74 5.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (56)
参考文献  (3)
节点文献
引证文献  (4)
同被引文献  (11)
二级引证文献  (7)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(8)
  • 参考文献(1)
  • 二级参考文献(7)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
粒子群
BP神经网络
地表下沉系数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘工程
双月刊
1006-7949
23-1394/TF
大16开
哈尔滨市道外区红旗大街999号
14-322
1992
chi
出版文献量(篇)
2818
总下载数(次)
9
总被引数(次)
23770
论文1v1指导