基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
研究了一种神经元模型,在该模型中将参数可调的激励函数往前移到权值上,即把权值变为参数可调的函数,这些权值函数的累加和作为神经元的输出.将此类神经元称为权值函数神经元,根据BP算法给出了由其构成的前馈神经网络的学习算法.仿真实验对比结果表明,在给定的误差精度要求下,基于权值函数神经元的BP神经网络每次训练都能收敛,且平均迭代步数较少,其收敛速度要优于传统BP网络,具有较好的研究应用价值.
推荐文章
自学习神经元及自学习BP网络
自学习神经元
自学习BP网络
学习策略
面向神经元
基于复数权神经元的多值整形器稳健设计
复数权值
多值神经元
多值逻辑
稳健神经元
多输入Sigmoid激励函数神经网络权值与结构确定法
BP神经网络
多输入
Sigmoid激励函数
权值直接确定法
双阶段结构自确定法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于权值函数神经元的BP网络研究
来源期刊 福建师范大学学报(自然科学版) 学科 工学
关键词 神经元 模型 神经网络 BP算法
年,卷(期) 2010,(2) 所属期刊栏目
研究方向 页码范围 52-56
页数 5页 分类号 TP183
字数 2750字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄晞 福建师范大学物理与光电信息科技学院 46 195 9.0 12.0
2 王平 福建师范大学物理与光电信息科技学院 88 503 12.0 17.0
3 张萧 福建师范大学物理与光电信息科技学院 4 32 2.0 4.0
4 翁宗煌 福建师范大学物理与光电信息科技学院 3 14 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (37)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(2)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
神经元
模型
神经网络
BP算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
福建师范大学学报(自然科学版)
双月刊
1000-5277
35-1074/N
大16开
福建省福州市福建师范大学旗山校区
34-43
1956
chi
出版文献量(篇)
2742
总下载数(次)
2
总被引数(次)
14898
相关基金
福建省自然科学基金
英文译名:Natural Science Foundation of Fujian Province of China
官方网址:http://www.fjinfo.gov.cn/fz/zrjj.htm
项目类型:重大项目
学科类型:
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导