摘要:
给定一个连通图C=(V,E)及其一棵支撑树T,图G的一个L(d,1)-T标号即函数g:V(G)→{0,1,2,…},满足:(1)如果xy∈E(G),则|g(x)-g(y)|≥1;(2)如果dG(x,y)=2,则|g(x)-g(y)|≥1;(3)如果xy∈E(T),则|g(x)-g(y)|≥d.假设图G有一个L(d,1)-T标号函数g:g(V)∈{0,1,2,…,k},则图G的所有L(d,1)-T标号函数中最小的整数k记为L(d,1)-T标号数λdT(G,T).本文证明了若G是无K1,t(3≤t≤n)的连通图,其最大度为△,|G|=n,T为G的任意支撑树,则λdT(G,T)≤t-2/t-1△2+△+2d-2.