基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了1种组合神经网络结构的车牌汉字识别方法,主要从特征选取和分类器设计2方面研究车牌汉字字符识别,识别系统由2层神经网络组成,应用FCM算法对汉字进行粗聚类,聚类结果作为后续网络的先验知识,产生网络训练目标,采用LVQ网络进行粗分类,通过BP网络进行细分类.该种分层结构缩减了待识别模式的搜索范围,克服了传统单层识别系统识别率不高和组合网络粗分类率低的缺点.实验结果显示,本方法的识别率高,识别效率较好.
推荐文章
基于特征统计的车牌非汉字字符识别方法
特征统计
车牌
字符识别
图像处理
投影分析
基于神经网络算法的字符识别方法研究
BP神经网络
车牌
字符识别
形状
基于神经网络的分阶车牌字符识别算法研究
车牌字符识别
BP神经网络
卷积神经网络
分阶
基于小波和神经网络的车牌字符识别新方法
小波变换
神经网络
车牌识别
字符识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于FCM和组合神经网络的车牌汉字字符识别方法
来源期刊 交通信息与安全 学科 工学
关键词 FCM LVQ 神经网络 聚类 字符识别
年,卷(期) 2010,(3) 所属期刊栏目
研究方向 页码范围 30-34
页数 分类号 TP391.4
字数 3471字 语种 中文
DOI 10.3963/j.ISSN1674-4861.2010.03.007
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 魏运 9 37 5.0 5.0
2 仝淑贞 5 10 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (11)
共引文献  (36)
参考文献  (8)
节点文献
引证文献  (6)
同被引文献  (8)
二级引证文献  (0)
1962(1)
  • 参考文献(1)
  • 二级参考文献(0)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2011(3)
  • 引证文献(3)
  • 二级引证文献(0)
2013(2)
  • 引证文献(2)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FCM
LVQ 神经网络
聚类
字符识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
交通信息与安全
双月刊
1674-4861
42-1781/U
大16开
武汉市武昌和平大道1178号
38-94
1983
chi
出版文献量(篇)
3739
总下载数(次)
14
论文1v1指导