基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决现有BP神经网络电价预测模型中由于非关联输入样本过多而影响学习效率、导致预测精度降低的问题,在分析电价与负荷相关性的基础上,提出了采用电价与负荷相关系数作为判断是否将负荷引入模型条件的新方法,并将相关系数引入PSO-BP神经网络电价预测模型,以降低模型非关联输入样本数,提高预测精度采用我国四川电力市场资料进行仿真计算,证明该方法具有良好的预测效果.
推荐文章
基于混沌与改进BP神经网络的电价预测方法
电力市场
神经网络
混沌
电价
基于改进PSO-BP神经网络的回弹预测研究
V形自由折弯
回弹
BP神经网络
改进粒子群算法
全局搜索能力
收敛精度
泛化能力
基于PSO-BP神经网络的高炉煤气受入量的预测
高炉煤气
受入量预测
预测模型
PSO-BP神经网络
模型训练
模型检验
基于PSO?BP神经网络的短期负荷预测算法
短期负荷预测
BP神经网络
粒子群算法
零相滤波器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 引入电价与负荷相关系数的PSO-BP神经网络电价预测模型
来源期刊 水力发电学报 学科 工学
关键词 电力市场 电价预测 相关系数 PSO-BP神经网络模型
年,卷(期) 2010,(1) 所属期刊栏目
研究方向 页码范围 219-222
页数 4页 分类号 TM133
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李郁侠 73 798 15.0 25.0
2 王丽霞 7 26 3.0 5.0
3 李娜 30 316 8.0 17.0
4 杨亚刚 5 14 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (116)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(8)
  • 参考文献(1)
  • 二级参考文献(7)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电力市场
电价预测
相关系数
PSO-BP神经网络模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水力发电学报
月刊
1003-1243
11-2241/TV
小16开
中国北京清华大学水电工程系
1982
chi
出版文献量(篇)
3865
总下载数(次)
7
总被引数(次)
47197
相关基金
陕西省自然科学基金
英文译名:Natural Science Basic Research Plan in Shaanxi Province of China
官方网址:
项目类型:
学科类型:
论文1v1指导