基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
采用黄金分割原理优化算法确定BP神经网络的隐含层节点数,进而确定BP神经网络的结构,并针对BP神经网络容易陷入局部极小值和全局搜索能力弱的缺点,引人遗传算法(GA)优化网络权值,建立GA-BP网络模型,预测作物参考腾发量ET0.以北京地区的相关资料为基础,选用6种输入因子组合方案,对该模型进行验证,结果表明该网络模型具有较好的预测能力;同时,对6种方案比较分析表明,方案4最优,该方案只需选用4项输入因子(日序数、平均气温、风速和日照时数),就能以较高的精度预测作物参考腾发量.
推荐文章
基于进化神经网络的参考作物腾发量预测
参考作物腾发量
神经网络
遗传算法
预测
基于GA-BP神经网络算法的马铃薯晚疫病预测模型
马铃薯晚疫病
遗传算法
BP神经网络
归一化处理
基于GA-BP神经网络的电力系统负荷预测研究
电力系统
负荷预测
BP神经网络
遗传算法
GA-BP
基于GA-BP神经网络的城市用水量预测
城市用水
用水量预测
BP神经网络
预测建模
网络训练
仿真分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于GA-BP神经网络的作物参考腾发量预测
来源期刊 农机化研究 学科 工学
关键词 遗传算法 GA-BP神经网络 作物参考腾发量
年,卷(期) 2011,(1) 所属期刊栏目
研究方向 页码范围 61-64
页数 分类号 TP273.+4
字数 2851字 语种 中文
DOI 10.3969/j.issn.1003-188X.2011.01.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张志政 西安建筑科技大学环境学院 17 89 4.0 9.0
2 李伟 西安建筑科技大学环境学院 51 232 8.0 12.0
3 矫亚涛 西安建筑科技大学环境学院 1 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (133)
参考文献  (3)
节点文献
引证文献  (3)
同被引文献  (11)
二级引证文献  (1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(4)
  • 参考文献(3)
  • 二级参考文献(1)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
遗传算法
GA-BP神经网络
作物参考腾发量
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
农机化研究
月刊
1003-188X
23-1233/S
大16开
黑龙江哈尔滨市哈平路156号
14-324
1979
chi
出版文献量(篇)
14318
总下载数(次)
39
总被引数(次)
94283
论文1v1指导