基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Predicting the performance of intelligent multi-robot systems is advantageous because running physical experiments with teams of robots can be costly and time consuming. Controlling for every factor can be difficult in the presence of minor disparities (i.e. battery charge). Access to a variety of environmental configurations and hardware choices is prohibitive in many cases. With the eminent need for dependable robot controllers and algorithms, it is essential to understand when real robot performance can be accurately predicted. New prediction methods must account for the effects of digital and physical interaction between the robots that are more complex than just collision detection of 2D or physics-based 3D models. In this paper, we identify issues in predicting multi-robot performance and present examples of statistical and model-based simulation methods and their applicability to multi-robot systems. Even when sensor noise, latency and environmental configuration are modeled in some complexity, multi-robot systems interject interference and messaging latency, causing many prediction systems to fail to correlate to absolute or relative performance. We support this supposition by comparing results from 3D physics-based simulations to identical experiments with a physical robot team for a coverage task.
推荐文章
The performance of the Noblesse multi-collector noble gas mass spectrometer for 40Ar/39Ar geochronol
Ar/Ar geochronology
Multi-collector
High precision
Noblesse
Age standard
WWW信息收集的ROBOT技术
万维网
搜索引擎
机器人
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Identification of Issues in Predicting Multi-Robot Performance through Model-Based Simulations
来源期刊 智能控制与自动化(英文) 学科 医学
关键词 INTELLIGENT ROBOTS MULTI-ROBOT Systems PERFORMANCE Prediction Simulation
年,卷(期) 2011,(2) 所属期刊栏目
研究方向 页码范围 133-143
页数 11页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
INTELLIGENT
ROBOTS
MULTI-ROBOT
Systems
PERFORMANCE
Prediction
Simulation
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能控制与自动化(英文)
季刊
2153-0653
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
250
总下载数(次)
0
总被引数(次)
0
论文1v1指导