The advantages, such as a small cutting force, narrow kerf and little material waste make wire saw cut- ting suitable for machining precious materials like SiC, Si monocrystal and a variety of gem. As regards wire saw cutting fo wafer, however, in traditional wire saw cutting process, the cutting efficiency is low, the wear of wire saw is badly, the surface roughness of wafer is poor etc, which have a seriously impact on the cutting process stability and the use of wafers. Ultrasonic-assisted machining method is very suitable for processing a variety of non-conduc- tive hard and brittle materials, glass, ceramics, quartz, silicon, precious stones and diamonds, etc. In this paper, the force model of ultrusonic-assisted wire saw cutting of SiC monocrystal wafer, based on the kinematic and experi- mental analysis were established. The single factor and orthogonal experimental scheme for different processing pa- rameters such as wire saw speed, part rotation speed of and part feed rate, were carried out in traditional wire saw and ultrasonic-assisted wire saw cutting process. The multiple linear regression method is used to establish the static model among the cutting force, processing parameters and ultrasonic vibration parameters, and the model signifi- cance is verified. The results show, as regards ultrasonic-assisted wire saw cutting of SiC monicrystal wafer, both the tangential and normal cutting forces can reduce about 24. 5%-36% and 36. 6%-40%.