基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高鉴别式学习策略训练的贝叶斯网络分类器的分类精度,分析了贝叶斯网络结构与数据中变量分布之间的差异对贝叶斯网络分类器性能的影响,实验以网络结构的实际联合概率分布的树型近似描述为基准,删除在条件对数似然函数极大化过程中不起作用的边,生成具有同一联合概率分布的不同描述程度的网络结构.实验结果表明,只有当网络结构表现力不足时,鉴别式参数学习才能起积极作用;而当网络结构中有多余的边时,反而容易受其制约.从而验证了网络中多余的边对分类器性能没有影响的观点是片面的.
推荐文章
基于预测能力的贝叶斯网络分类器学习
贝叶斯网络
分类器
预测能力
多贝叶斯网络分类器集成模型研究
贝叶斯网络
分类器集成模型
结构学习
约束信息熵
免疫遗传算法
基于贝叶斯网络分类器的产品故障率分类研究
维护保障
故障率等级
分类器
贝叶斯网络
基于TAN贝叶斯网络分类器的测井岩性预测
贝叶斯网络分类器
测井岩性预测
树扩展朴素贝叶斯分类器
模式识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 贝叶斯网络分类器结构与变量分布的差异性分析
来源期刊 北京交通大学学报 学科 工学
关键词 数据挖掘 机器学习 贝叶斯网络 分类器 结构学习 参数学习 鉴别式学习
年,卷(期) 2011,(2) 所属期刊栏目 计算机与信息技术
研究方向 页码范围 32-35,47
页数 分类号 TP311|TP18
字数 3824字 语种 中文
DOI 10.3969/j.issn.1673-0291.2011.02.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王志海 北京交通大学计算机与信息技术学院 64 491 11.0 20.0
2 付彬 北京交通大学计算机与信息技术学院 7 42 4.0 6.0
3 王中锋 北京交通大学计算机与信息技术学院 7 62 4.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (2)
同被引文献  (8)
二级引证文献  (6)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2011(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2015(1)
  • 引证文献(0)
  • 二级引证文献(1)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
数据挖掘
机器学习
贝叶斯网络
分类器
结构学习
参数学习
鉴别式学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京交通大学学报
双月刊
1673-0291
11-5258/U
大16开
北京西直门外上园村3号
1975
chi
出版文献量(篇)
3626
总下载数(次)
7
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导