基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高煤矿通风机故障诊断的准确性,采用了一种粒子群优化RBF神经网络的方法。利用粒子群容易实现等特点,对RBF网络的中心、宽度以及连接权重进行优化,并用优化好的神经网络对通风机进行故障诊断。仿真结果表明,该方法具有较好的分类效果,适用于通风机的故障诊断,是一种实用的故障诊断方法。
推荐文章
基于粒子群优化SOM神经网络的轴系多振动故障诊断
粒子群算法
神经网络
振动
故障诊断
基于粒子群神经网络的汽轮机故障诊断
粒子群
神经网络
汽轮机
故障诊断
基于粒子群优化的可拓神经网络故障诊断方法研究
故障诊断
可拓神经网络
粒子群
物元
关联函数
基于粒子群神经网络的发动机故障诊断
粒子群
神经网络
汽车发动机
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于粒子群优化RBF神经网络的煤矿通风机故障诊断
来源期刊 煤矿安全 学科 工学
关键词 粒子群 通风机 神经网络 故障诊断
年,卷(期) 2011,(9) 所属期刊栏目 分析·探讨
研究方向 页码范围 143-145
页数 分类号 TD724
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (50)
共引文献  (55)
参考文献  (8)
节点文献
引证文献  (3)
同被引文献  (9)
二级引证文献  (6)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(10)
  • 参考文献(0)
  • 二级参考文献(10)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(7)
  • 参考文献(3)
  • 二级参考文献(4)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(2)
  • 引证文献(2)
  • 二级引证文献(0)
2015(4)
  • 引证文献(0)
  • 二级引证文献(4)
2016(1)
  • 引证文献(0)
  • 二级引证文献(1)
2017(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
粒子群
通风机
神经网络
故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
煤矿安全
月刊
1003-496X
21-1232/TD
大16开
辽宁省抚顺市经济开发区滨河路11号
1970
chi
出版文献量(篇)
12289
总下载数(次)
22
总被引数(次)
57391
论文1v1指导