基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
结合基于视觉原理的密度聚类算法对初始化参数不敏感、能发现任意形状的聚类、能够找出最优聚类及一趟聚类算法快速高效的特点,研究可以处理混合属性的高效聚类算法.首先简单改进基于视觉原理的密度聚类算法,使之可以处理含分类属性的数据,进而提出一种两阶段聚类算法。第一阶段使用一趟聚类算法对数据集进行初始划分,第二阶段利用基于视觉原理的密度聚类算法归并初始划分而得到最终聚类。在真实数据集和人造数据集上的实验结果表明,提出的两阶段聚类算法是有效可行的。
推荐文章
基于加权K近邻的改进密度峰值聚类算法
数据挖掘
加权K近邻
密度峰值
聚类
基于改进果蝇优化的密度峰值聚类算法
密度峰值聚类
截断距离
果蝇优化算法
Tent混沌
柯西变异
收敛性
一种基于密度的分布式聚类改进算法
聚类
分布式
数据挖掘
代表点
一种改进的基于密度聚类的入侵检测算法
入侵检测
密度聚类
数据挖掘
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于视觉原理的密度聚类算法的改进
来源期刊 山东大学学报:工学版 学科 工学
关键词 一趟聚类算法 视觉原理聚类 任意形状簇
年,卷(期) 2011,(4) 所属期刊栏目
研究方向 页码范围 85-90
页数 分类号 TP309
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蒋盛益 广东外语外贸大学信息学院 92 1053 18.0 28.0
2 余雯 广东外语外贸大学国际工商管理学院 4 62 3.0 4.0
3 罗方伦 广东外语外贸大学信息学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (23)
共引文献  (52)
参考文献  (9)
节点文献
引证文献  (2)
同被引文献  (2)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1966(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(4)
  • 参考文献(1)
  • 二级参考文献(3)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2015(1)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
一趟聚类算法
视觉原理聚类
任意形状簇
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山东大学学报(工学版)
双月刊
1672-3961
37-1391/T
大16开
济南市经十路17923号
24-221
1956
chi
出版文献量(篇)
3095
总下载数(次)
14
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导