基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In patients with heart failure and disordered intracardiac conduction of activation, doctors implant a biven- tricular pacemaker (“cardiac resynchronization therapy”, CRT) to allow adjustment of the relative timings of activation of parts of the heart. The process of selecting the pacemaker timings that maximize cardiac function is called “optimization”. Although optimization—more than any other clinical assessment—needs to be precise, it is not yet conventional to report the standard error of the optimum alongside its value in clinical practice, nor even in research, because no method is available to calculate precision from one optimization dataset. Moreover, as long as the determinants of precision remain unknown, they will remain unconsidered, preventing candidate haemodynamic variables from being screened for suitability for use in optimization. This manuscript derives algebraically a clinically-applicable method to calculate the precision of the optimum value of x arising from fitting noisy biological measurements of y (such as blood flow or pressure) obtained at a series of known values of x (such as atrioventricular or interventricular delay) to a quadratic curve. A formula for uncertainty in the optimum value of x is obtained, in terms of the amount of scatter (irreproducibility) of y, the intensity of its curvature with respect to x, the width of the range and number of values of x tested, the number of replicate measurements made at each value of x, and the position of the optimum within the tested range. The ratio of scatter to curvature is found to be the overwhelming practical determinant of precision of the optimum. The new formulae have three uses. First, they are a basic science for anyone desiring time-efficient, reliable optimization protocols. Second, asking for the precision of every reported optimum may expose optimization methods whose precision is unacceptable. Third, evaluating precision quantitatively will help clinicians decide whether an apparent change in optimum between s
推荐文章
Influence of the biological carbon pump effect on the sources and deposition of organic matter in Fu
Carbonate weathering
Hydrochemical variation
Biological carbon pump effect
Sediment trap
Autochthonous organic carbon
Carbon sink
Oil geochemistry derived from the Qinjiatun–Qikeshu oilfields: insight from light hydrocarbons
Light hydrocarbons
Crude oil
Lishu Fault Depression
Geochemistry characteristic
Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from Shangzhi, N
Mantle peridotite
Li isotope
Mantle metasomatism
Northeastern China
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Precision of a Parabolic Optimum Calculated from Noisy Biological Data, and Implications for Quantitative Optimization of Biventricular Pacemakers (Cardiac Resynchronization Therapy)
来源期刊 应用数学(英文) 学科 医学
关键词 CARDIAC PACEMAKER PARABOLIC HAEMODYNAMICS
年,卷(期) 2011,(12) 所属期刊栏目
研究方向 页码范围 1497-1506
页数 10页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CARDIAC
PACEMAKER
PARABOLIC
HAEMODYNAMICS
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导