Hydrophobic mechanism and criterion of lotus-leaf-like micro-convex-concave surface
Hydrophobic mechanism and criterion of lotus-leaf-like micro-convex-concave surface
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
摘要:
According to the principle that the contact angle of liquid droplet always increases on a limited liquid-solid interface,it is suggested that the integration of many small-size limited liquid-solid interfaces results in the increase of the hydrophobicity of lotus-leaf-like micro-convex-concave surfaces.Mathematical equations of the stability of liquid-droplets on the surface of lotus-leaf-like structure were established.The relationship between the theoretical critical-radius of the void of micro-convex-concave surface and the nature of the solid and the liquid was drawn.The three conditions of realizing hydrophobicity were described.The result of computation has shown that when the radius of the void of micro-concave-convex surface is less than the theoretical critical-radius r c,the droplets may always be in a stable state on the solid surface with the contact angle greater than 90°.Theminimum area of the liquid-solid interface and low surface energy of solids are important factors in realizing hydrophobicity.The effective work of adhesion W a ' was proposed as a criterion for measuring the hydrophobic ability of the solid surface.