原文服务方: 计算机测量与控制       
摘要:
针对复杂装备故障信息不足、故障预测困难等问题,应用支持向量机建立了故障预测模型;在对支持向量机回归算法分析的基础上,利用最小二乘支持向量机建立故障预测模型;最小二乘支持向量机通过对相空间重构,有效地降低了模型的复杂度;最后,本文利用某导弹发射装置液压泵的故障数据进行了验证,通过选取合适的参数,该模型能够较好地对故障数据进行预测,预测精度较高;事实证明,基于最小二乘支持向量机建立故障预测模型能够较好地对复杂装备故障的趋势进行预测.
推荐文章
基于最小二乘支持向量机的蜡沉积速率预测
最小二乘支持向量机
蜡沉积速率
预测
模型
模型精度
基于最小二乘支持向量机的耕地面积预测研究
最小二乘支持向量机
粒子群算法
耕地面积
影响因子
基于最小二乘支持向量机的短期负荷预测模型
最小二乘支持向量机
神经网络
短期负荷预测
时间序列预测
基于最小二乘支持向量机的铁路客运量预测研究
铁路客运量
最小二乘支持向量机
预测模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于最小二乘支持向量机的复杂装备故障预测模型研究
来源期刊 计算机测量与控制 学科
关键词 故障预测模型 回归算法 最小二乘支持向量机
年,卷(期) 2011,(5) 所属期刊栏目 自动化测试
研究方向 页码范围 1030-1032
页数 分类号 TP206
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙江生 26 226 8.0 14.0
2 连光耀 43 226 8.0 12.0
3 吕晓明 19 138 8.0 11.0
4 黄考利 31 212 8.0 13.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (103)
共引文献  (94)
参考文献  (7)
节点文献
引证文献  (8)
同被引文献  (23)
二级引证文献  (18)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(5)
  • 参考文献(0)
  • 二级参考文献(5)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(13)
  • 参考文献(0)
  • 二级参考文献(13)
2001(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(20)
  • 参考文献(1)
  • 二级参考文献(19)
2003(24)
  • 参考文献(0)
  • 二级参考文献(24)
2004(16)
  • 参考文献(0)
  • 二级参考文献(16)
2005(12)
  • 参考文献(2)
  • 二级参考文献(10)
2006(5)
  • 参考文献(2)
  • 二级参考文献(3)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(3)
  • 引证文献(3)
  • 二级引证文献(0)
2014(4)
  • 引证文献(1)
  • 二级引证文献(3)
2015(6)
  • 引证文献(2)
  • 二级引证文献(4)
2016(5)
  • 引证文献(0)
  • 二级引证文献(5)
2017(3)
  • 引证文献(1)
  • 二级引证文献(2)
2018(1)
  • 引证文献(0)
  • 二级引证文献(1)
2019(3)
  • 引证文献(1)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
故障预测模型
回归算法
最小二乘支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导