针对在杂波、漏检和非线性情况下,粒子概率假设密度滤波(particle probability hypothesis density filter,P-PHDF)算法估计精度不高、滤波发散及粒子退化等问题,提出了一种基于无迹粒子概率假设密度滤波(unscented particle-PHDF,UP-PHDF)的序贯融合算法.利用无迹粒子滤波(unscented particle filter,UPF)实现PHDF,由UKF算法得到更好更优的重要性密度函数并从中采样,使粒子的分布更接近多目标概率假设密度分布;另外,为进一步提高滤波算法的性能,实现基于雷达和红外传感器的UP-PHDF序贯融合算法,通过两传感器交替滤波保证目标状态的可观测性.在复杂环境下,仿真结果表明该算法的估计精度和稳定性明显优于单传感器P-PHDF算法.