基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
介绍了基于RBF神经网络的电力系统短期负荷预测方法的相关概念,论述其具体实现途径.通过类比分析的方法对该类预测方法改进的过程进行回顾,指出其在实践中取得的进步.阐述了一些比较成熟的基于RBF神经网络预测模型的基本原理和技术特点,并对它们进行了评价.根据电力系统运行的实际特点和面临的新情况,从算法改进、原始负荷数据筛选和如何结合实际负荷特点等三方面对该方法进行分析.探讨了该领域持续改进的发展空间,指出了该领域进一步发展的技术趋势.
推荐文章
基于RBF神经网络和专家系统的短期负荷预测方法
短期负荷预测
径向基神经网络
专家系统
基于混沌模糊神经网络方法的短期负荷预测
短期负荷
混沌算法
模糊神经网络
预测模型
基于PSO?BP神经网络的短期负荷预测算法
短期负荷预测
BP神经网络
粒子群算法
零相滤波器
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于RBF神经网络的短期负荷预测方法综述
来源期刊 电力系统保护与控制 学科 工学
关键词 短期负荷预测 人工神经网络 RBF径向基神经网络 粒子群优化 智能单粒子优化
年,卷(期) 2011,(17) 所属期刊栏目 综述
研究方向 页码范围 144-148
页数 分类号 TM715
字数 4830字 语种 中文
DOI 10.3969/j.issn.1674-3415.2011.17.028
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 彭显刚 广东工业大学自动化学院 105 1183 20.0 30.0
2 胡松峰 广东工业大学自动化学院 1 0 0.0 0.0
3 吕大勇 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (114)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1996(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(2)
  • 二级参考文献(2)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(3)
  • 参考文献(2)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
短期负荷预测
人工神经网络
RBF径向基神经网络
粒子群优化
智能单粒子优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电力系统保护与控制
半月刊
1674-3415
41-1401/TM
大16开
河南省许昌市许继大道1706号
36-135
1973
chi
出版文献量(篇)
11393
总下载数(次)
13
总被引数(次)
201041
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导