基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
主成分分析(PCA)能够有效地提取数据的特征信息,消除变量间的共线性,而将基于统计学习理论的支持向量机(SVM)用于数据建模具有显著的优点.本文将主成分分析应用到大坝变形影响因子的优化中,解决了由影响因子内部相关性而引入大量因子的问题,降低了输入维数,简化了输入结构.将简化后的数据作为SVM的输入因子,减少了SVM学习的时间,提高了拟合效率.试验结果表明该方法具有较高的预测精度和较强的泛化能力.
推荐文章
基于PCA-SVM的油气管道腐蚀速率预测技术研究
油气管道
腐蚀速率
PCA-SVM模型
预测
基于价值投资的PCA-SVM股票选择模型研究
股票
价值投资
模式识别
支持向量机
主成分分析
基于遗传优化的PCA-SVM控制图模式识别
控制图
模式识别
遗传优化
主元分析
支持向量机
基于PCA-SVM算法在岩性识别中的应用
岩性识别
主成分分析
判别分析
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 利用PCA-SVM的大坝变形预测研究
来源期刊 测绘科学 学科 地球科学
关键词 主成分分析 支持向量机 变形预测
年,卷(期) 2011,(1) 所属期刊栏目
研究方向 页码范围 73-74
页数 2页 分类号 P258
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 鲁铁定 东华理工大学测绘工程学院 113 1082 16.0 28.0
2 吕开云 26 157 7.0 12.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (103)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(5)
  • 参考文献(1)
  • 二级参考文献(4)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(3)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
主成分分析
支持向量机
变形预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘科学
月刊
1009-2307
11-4415/P
大16开
北京市海淀区北太平路16号
2-945
1976
chi
出版文献量(篇)
7258
总下载数(次)
36
总被引数(次)
67354
论文1v1指导