作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
保证网络运行的安全性,防止外来攻击与破坏,进行准确检测.由于网络入侵具有不确性,针对复杂性和多样性,传统检测方法不能有效对这种特性进行识别,导致目前网络入侵检测准确率低.为了提高网络入侵检测准确率,将粒子群(PSO)算法引入到网络人侵检测中,用优化SVM参数.PSO-SVM将网络入侵检测数据输入到SVM中学习,将SVM参数作为PSO中的粒子,把网络人侵检测准确率作为PSO的目标函数,然后通过粒子之间相互协作得到SVM最优参数,最后对网络入侵数据进行检测并输出网络人侵检测结果.在Matlab平台上采用DRAP网络入侵数据集对PSO-SVM进行仿真.实验结果表明,改进的方法PSO-SVM检测速度快,检测准确率高,为网络安全提供可靠保障.
推荐文章
基于SSA-SVM的网络入侵检测研究
麻雀搜索算法
误报率
支持向量机
网络入侵
检测率
一种基于累加PSO-SVM的网络安全态势预测模型
网络安全
态势预测
累加预处理
支持向量机
粒子群算法
基于PSO-SVM的管道小泄漏检测
管道
泄漏检测
超声波波速
特征提取
SVM
PSO-SVM
基于PSO-SVM的发动机故障诊断研究
粒子群优化算法
支持向量机
发动机
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 PSO-SVM算法在网络入侵检测中的研究
来源期刊 计算机仿真 学科 工学
关键词 入侵检测 支持向量机 粒子群算法
年,卷(期) 2011,(4) 所属期刊栏目 网络与互连技术
研究方向 页码范围 130-132,148
页数 分类号 TP319
字数 2911字 语种 中文
DOI 10.3969/j.issn.1006-9348.2011.04.032
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 鞠秋文 4 16 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (33)
共引文献  (89)
参考文献  (7)
节点文献
引证文献  (14)
同被引文献  (76)
二级引证文献  (37)
1987(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(8)
  • 参考文献(0)
  • 二级参考文献(8)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(7)
  • 参考文献(2)
  • 二级参考文献(5)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(2)
  • 二级参考文献(0)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2012(1)
  • 引证文献(1)
  • 二级引证文献(0)
2013(2)
  • 引证文献(1)
  • 二级引证文献(1)
2014(5)
  • 引证文献(2)
  • 二级引证文献(3)
2015(7)
  • 引证文献(2)
  • 二级引证文献(5)
2016(4)
  • 引证文献(1)
  • 二级引证文献(3)
2017(8)
  • 引证文献(2)
  • 二级引证文献(6)
2018(10)
  • 引证文献(1)
  • 二级引证文献(9)
2019(12)
  • 引证文献(4)
  • 二级引证文献(8)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
入侵检测
支持向量机
粒子群算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机仿真
月刊
1006-9348
11-3724/TP
大16开
北京海淀阜成路14号
82-773
1984
chi
出版文献量(篇)
20896
总下载数(次)
43
论文1v1指导