This paper presents an evaluation of a new biometric electrocardiogram (ECG) for individual authentication. We report the potential of ECG as a biometric and address the research concerns to use ECG-enabled biometric authentication system across a range of conditions. We present a method to delineate ECG waveforms and their end fiducials from each heartbeat. A new authentication strategy is proposed in this work, which uses the delineated features and taking decision for the identity of an individual with respect to the template database on the basis of match scores. Performance of the system is evaluated in a unimodal framework and in the multibiometric framework where ECG is combined with the face biometric and with the fingerprint biometric. The equal error rate (EER) result of the unimodal system is reported to 10.8%, while the EER results of the multibiometric systems are reported to 3.02% and 1.52%, respectively for the systems when ECG combined with the face biometric and ECG combined with the fingerprint biometric. The EER results of the combined systems prove that the ECG has an excellent source of supplementary information to a multibiometric system, despite it shows moderate performance in a unimodal framework. We critically evaluate the concerns involved to use ECG as a biometric for individual authentication such as, the lack of standardization of signal features and the presence of acquisition variations that make the data representation more difficult. In order to determine large scale performance, individuality of ECG remains to be examined.