基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
To copy natural photosynthesis process we need to understand and explain the physics underneath its first step mechanism, which is “how to separate electrical charges under attraction”. But this Nature’s nanotechnological creation is not yet available to the scientific community. We present a new interpretation for the artificial and natural photosynthetic mechanism, concerning the electrical charges separation and the spent energy to promote the process. Interface (e–, h+) recombination and emission is applied to explain the photosynthetic mechanisms. This interpretation is based on energy bands relative position, the staggered one, which under illumination promotes (e–, h+) charges separation through the action of an interface electric field and energy consumption at the interface of both A/B generic materials. Energy band bending is responsible by the interface electric field (and the driving force) for the charges separation. This electric field can be as high or above that for p-n semiconductor junctions (104 - 105 V/cm). This physical effect is not considered by most of the researches. Without an electric field and without spending energy to separate electrical charges, any other existing model violates physical laws. The staggered energy band type is the only energetic configuration that permits charges separation under illumination and energy loss to perform the process. Application to natural photosynthesis and artificial photovoltaic material and their energetic configurations are discussed. Examples for A/B being III-V/III-V, TiO2/materials and II-VI/II-VI staggered energy band gap pairs are presented. In the proposed quantum mechanism, plants are able to eliminate most of the 79% of the absorbed visible light, according to the published reflection and transmission data. Moreover, the proposed mechanism can be applied to explain green fluorescent protein - GFP, charge transfer states - CTS and Fluorescent Resonance Energy Transfer - FRET. As recent literature experimental results propose phot
推荐文章
植物Na+/H+逆向转运蛋白研究进展
Na+/H+逆向转运蛋白,离子
区隔化,基因
耐盐性
磷饥饿对番茄幼苗H+分泌及Pi吸收的影响
番茄
磷饥饿
Pi吸收
H+分泌
H+泵
Pi/H+准量关系
大米草Na+/H+逆转运蛋白基因片段的克隆
大米草
Na+/H+逆转运蛋白基因
克隆
植物液泡膜Na+/H+逆向转运蛋白的研究与应用
植物
液泡膜
Na+/H+逆向转运蛋白
耐盐性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Interface Recombination &Emission Applied to Explain Photosynthetic Mechanisms for (e–, h+) Charges’ Separation
来源期刊 纳米科学与工程(英文) 学科 医学
关键词 SOLAR ENERGY Renewable ENERGY Photovoltaic PHOTOSYNTHESIS Type II Interfaces Staggered INTERFACE INTERFACE EMISSION INTERFACE Recombination Quantum PHOTOSYNTHESIS SOLAR Cell FRET GFP
年,卷(期) nmkxygcyw,(2) 所属期刊栏目
研究方向 页码范围 58-87
页数 30页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
SOLAR
ENERGY
Renewable
ENERGY
Photovoltaic
PHOTOSYNTHESIS
Type
II
Interfaces
Staggered
INTERFACE
INTERFACE
EMISSION
INTERFACE
Recombination
Quantum
PHOTOSYNTHESIS
SOLAR
Cell
FRET
GFP
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
纳米科学与工程(英文)
季刊
2161-4954
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
121
总下载数(次)
0
论文1v1指导