作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高预测具有周期性和随机性的电力负荷精度,提出了一种基于经验模式分析(EMD)与粗糙集及神经网络相结合的短期负荷预测方法.该方法利用EMD的自适应性,自动地将目标负荷序列分解为若干个独立的内在模式分量.考虑影响电力负荷的气象因子和模式分量信息量较大,利用粗糙集进行了属性约简,约简后的各个分量采用相匹配BP神经网络模型分别进行预测,然后,相加各分量预测值得到最终预测结果.仿真试验表明,该方法与EMD - BP模型预测方法相比,具有较高的精度和较强的适应能力.
推荐文章
基于灰色粗糙集与BP神经网络的设备故障预测
灰色关联分析
粗糙集
BP神经网络
约简
故障预测
基于粗糙集模糊神经网络的爆破振动危害预测
爆炸力学
危害预测
粗糙集
爆破振动
模糊神经网络
基于粗糙集神经网络的燃煤发热量预测模型
粗糙集
约简
神经网络
发热量
基于粗糙集的遗传神经网络短期负荷预测方法
短期负荷预测
粗糙集
神经网络
遗传算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于EMD与粗糙集及神经网络相结合的短期负荷预测
来源期刊 黑龙江电力 学科 工学
关键词 短期负荷预测 经验模式分解 BP神经网络 粗糙集 电力系统
年,卷(期) 2012,(4) 所属期刊栏目 专家论坛
研究方向 页码范围 241-245
页数 分类号 TM715
字数 3432字 语种 中文
DOI 10.3969/j.issn.1002-1663.2012.04.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 兰华 东北电力大学电气工程学院 43 858 14.0 28.0
2 朱锋 东北电力大学电气工程学院 3 24 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (112)
共引文献  (482)
参考文献  (10)
节点文献
引证文献  (3)
同被引文献  (28)
二级引证文献  (30)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(4)
  • 参考文献(0)
  • 二级参考文献(4)
1996(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(15)
  • 参考文献(1)
  • 二级参考文献(14)
1999(11)
  • 参考文献(0)
  • 二级参考文献(11)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(11)
  • 参考文献(1)
  • 二级参考文献(10)
2002(9)
  • 参考文献(0)
  • 二级参考文献(9)
2003(13)
  • 参考文献(0)
  • 二级参考文献(13)
2004(12)
  • 参考文献(2)
  • 二级参考文献(10)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(4)
  • 参考文献(3)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(3)
  • 引证文献(0)
  • 二级引证文献(3)
2015(7)
  • 引证文献(1)
  • 二级引证文献(6)
2016(4)
  • 引证文献(0)
  • 二级引证文献(4)
2017(4)
  • 引证文献(0)
  • 二级引证文献(4)
2018(2)
  • 引证文献(0)
  • 二级引证文献(2)
2019(6)
  • 引证文献(1)
  • 二级引证文献(5)
2020(6)
  • 引证文献(0)
  • 二级引证文献(6)
研究主题发展历程
节点文献
短期负荷预测
经验模式分解
BP神经网络
粗糙集
电力系统
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
黑龙江电力
双月刊
1002-1663
23-1471/TM
大16开
哈尔滨市香坊区建北街61号
1979
chi
出版文献量(篇)
3200
总下载数(次)
3
总被引数(次)
8902
论文1v1指导