基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
研究如下一类Banach空间中一阶脉冲微分方程组的无穷边值问题u’=f(t,u(t),v(t)),v’=g(t,u(t),v(t)), (A)t∈J,t≠tk,△u|t=tk=Ik(u(tk),v(tk)),△v|t=tk=Jk(u(tk),v(tk)),k=1,2,…u(∞)=βu(0),v(∞)=δv(0).首先利用H.M(o)nch不动点定理和非紧性测度,获得了该问题解的存在性,然后在解存在的前提下,利用反证法证明了解的唯一性,所得结果推广了现有文献中已有的结论.最后,举例说明了结果的有效性.
推荐文章
一类分数阶微分方程边值问题解的存在唯一性
Banach压缩映射原理
分数阶微分方程边值问题
解存在唯一性
一类具有时滞的高阶分数阶微分方程积分边值问题解的存在唯一性
高阶分数阶微分方程
时滞
积分边值问题
存在唯一
Banach压缩映射原理
泛函微分方程边值问题解的存在性
泛函微分方程
边值问题
不动点
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Banach空间中一阶脉冲微分方程组的无穷边值问题解的存在唯一性
来源期刊 四川师范大学学报(自然科学版) 学科 数学
关键词 Banach空间 H.M(o)nch不动点定理 一阶脉冲微分方程组 无穷边值问题 存在性和唯一性
年,卷(期) 2012,(6) 所属期刊栏目
研究方向 页码范围 802-808
页数 7页 分类号 O175.8
字数 3997字 语种 中文
DOI 10.3969/j.issn.1001-8395.2012.06.018
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 罗节英 井冈山大学数理学院 5 6 2.0 2.0
2 王志伟 井冈山大学数理学院 12 11 2.0 2.0
3 汤小松 井冈山大学数理学院 11 11 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (51)
共引文献  (15)
参考文献  (17)
节点文献
引证文献  (3)
同被引文献  (13)
二级引证文献  (1)
1983(4)
  • 参考文献(0)
  • 二级参考文献(4)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(3)
  • 参考文献(0)
  • 二级参考文献(3)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(5)
  • 参考文献(0)
  • 二级参考文献(5)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(7)
  • 参考文献(1)
  • 二级参考文献(6)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(8)
  • 参考文献(4)
  • 二级参考文献(4)
2008(7)
  • 参考文献(3)
  • 二级参考文献(4)
2009(4)
  • 参考文献(3)
  • 二级参考文献(1)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(3)
  • 参考文献(3)
  • 二级参考文献(0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2013(1)
  • 引证文献(1)
  • 二级引证文献(0)
2014(1)
  • 引证文献(1)
  • 二级引证文献(0)
2015(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
Banach空间
H.M(o)nch不动点定理
一阶脉冲微分方程组
无穷边值问题
存在性和唯一性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川师范大学学报(自然科学版)
双月刊
1001-8395
51-1295/N
大16开
成都市静安路5号
1978
chi
出版文献量(篇)
3968
总下载数(次)
9
总被引数(次)
17783
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导