基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this paper, we propose a flexible knowledge representation framework which utilizes Symbolic Regression to learn and mathematical expressions to represent the knowledge to be captured from data. In this approach, learning algorithms are used to generate new insights which can be added to domain knowledge bases supporting again symbolic regression. This is used for the generalization of the well-known regression analysis to fulfill supervised classification. The approach aims to produce a learning model which best separates the class members of a labeled training set. The class boundaries are given by a separation surface which is represented by the level set of a model function. The separation boundary is defined by the respective equation. In our symbolic approach, the learned knowledge model is represented by mathematical formulas and it is composed of an optimum set of expressions of a given superset. We show that this property gives human experts options to gain additional insights into the application domain. Furthermore, the representation in terms of mathematical formulas (e.g., the analytical model and its first and second derivative) adds additional value to the classifier and enables to answer questions, which sub-symbolic classifier approaches cannot. The symbolic representation of the models enables an interpretation by human experts. Existing and previously known expert knowledge can be added to the developed knowledge representation framework or it can be used as constraints. Additionally, the knowledge acquisition framework can be repeated several times. In each step, new insights from the search process can be added to the knowledge base to improve the overall performance of the proposed learning algorithms.
推荐文章
Entity Framework浅析
EDM
ADO.NET
Entity Framework
编程员
Entity Framework数据库访问
数据库
模型
代码
Entity Framework技术
一种基于Knowledge的网络配置变更管理模型
网络管理
配置管理
Knowledge
组件
模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Learn More about Your Data: A Symbolic Regression Knowledge Representation Framework
来源期刊 智能科学国际期刊(英文) 学科 医学
关键词 Classification SYMBOLIC Regression KNOWLEDGE Management DATA Mining Pattern Recognition
年,卷(期) 2012,(4) 所属期刊栏目
研究方向 页码范围 135-142
页数 8页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Classification
SYMBOLIC
Regression
KNOWLEDGE
Management
DATA
Mining
Pattern
Recognition
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能科学国际期刊(英文)
季刊
2163-0283
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
102
总下载数(次)
0
总被引数(次)
0
论文1v1指导